Epigenetic drug discovery: targeting DNA methyltransferases.
نویسندگان
چکیده
Epigenetic modification of DNA leads to changes in gene expression. DNA methyltransferases (DNMTs) comprise a family of nuclear enzymes that catalyze the methylation of CpG dinucleotides, resulting in an epigenetic methylome distinguished between normal cells and those in disease states such as cancer. Disrupting gene expression patterns through promoter methylation has been implicated in many malignancies and supports DNMTs as attractive therapeutic targets. This review focuses on the rationale of targeting DNMTs in cancer, the historical approach to DNMT inhibition, and current marketed hypomethylating therapeutics azacytidine and decitabine. In addition, we address novel DNMT inhibitory agents emerging in development, including CP-4200 and SGI-110, analogs of azacytidine and decitabine, respectively; the oligonucleotides MG98 and miR29a; and a number of reversible inhibitors, some of which appear to be selective against particular DNMT isoforms. Finally, we discuss future opportunities and challenges for next-generation therapeutics.
منابع مشابه
Epigenetic targets and drug discovery Part 2: Histone demethylation and DNA methylation.
Chromatin structure is dynamically modulated by various chromatin modifications, such as histone/DNA methylation and demethylation. We have reviewed histone methyltransferases and methyllysine binders in terms of small molecule screening and drug discovery in the first part of this review series. In this part, we will summarize recent progress in chemical probe and drug discovery of histone dem...
متن کاملEmerging epigenetic targets and therapies in cancer medicine.
UNLABELLED Abnormalities in the epigenetic regulation of chromatin structure and function can lead to aberrant gene expression and cancer development. Consequently, epigenetic therapies aim to restore normal chromatin modification patterns through the inhibition of various components of the epigenetic machinery. Histone deacetylase and DNA methyltransferase inhibitors represent the first putati...
متن کاملMultitarget Drugs: an Epigenetic Epiphany.
Epigenetics refers to changes in a biological phenotype that are not due to an underlying change in genotype. In eukaryotes, epigenetics involves a set of chemical modifications of the DNA and the histone proteins in nucleosomes. These dynamic changes are carried out by enzymes and modulate protein-protein and protein-nucleic acid interactions to determine whether specific genes are expressed o...
متن کاملDNA demethylases: a new epigenetic frontier in drug discovery.
DNA methylation is one of the most extensively studied, and one of the most stable, of all epigenetic modifications. Two drugs that target DNA methyltransferase enzymes are licensed for clinical use in oncology but relatively little attention has focused on the enzymatic pathways by which DNA methylation can be reversed. Recent breakthroughs have identified at least two classes of enzymes that ...
متن کاملQuantification of Histone H3 Lys27 Trimethylation (H3K27me3) by High-Throughput Microscopy Enables Cellular Large-Scale Screening for Small-Molecule EZH2 Inhibitors
EZH2 inhibition can decrease global histone H3 lysine 27 trimethylation (H3K27me3) and thereby reactivates silenced tumor suppressor genes. Inhibition of EZH2 is regarded as an option for therapeutic cancer intervention. To identify novel small-molecule (SMOL) inhibitors of EZH2 in drug discovery, trustworthy cellular assays amenable for phenotypic high-throughput screening (HTS) are crucial. W...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomolecular screening
دوره 17 1 شماره
صفحات -
تاریخ انتشار 2012